Title
Contributions to the theory of shift-invariant spaces: doctoral dissertation
Creator
Aksentijević, Aleksandar, 1991-
CONOR:
24991079
Copyright date
2024
Object Links
Language
Serbian
Cobiss-ID
Theses Type
Doktorska disertacija
description
Datum odbrane: 26.12.2024.
Other responsibilities
Academic Expertise
Prirodno-matematičke nauke
Academic Title
-
University
Univerzitet u Kragujevcu
Faculty
Prirodno-matematički fakultet
Alternative title
Prilozi teoriji translaciono-invarijantnih prostora
Publisher
[A. S. Aksentijević]
Format
V, 107, [1] list
Abstract (en)
This doctoral dissertation investigates shift-invariant subspaces Vr of Sobolev spaces
Hr
(R
n
), where r ∈ R. Characterization of the spaces Vr was performed using range
functions, range operators, shift-preserving operators, and wave front. Also, characterizations of frames, Riesz families, and Bessel families were performed using the mentioned
operators and especially using Gram’s and dual Gram’s matrix. Relationships between
the mentioned operators were investigated, and the conditions under which the shiftpreserving operator could be s-diagonalizable and could be written as a finite sum of
products of its s-eigenvalues and corresponding projections were determined. The problem of dynamical sampling for spaces Vr was solved and different approaches to the theory
of shift-invariant spaces were identified. Elements of the spaces Vr were described using
a wave front. Finally, conditions under which there exists a product of elements from the
observed spaces and conditions when such a product would belong to some shift-invariant
space were determined.
The dissertation consists of six chapters. The first chapter is of an introductory nature.
It consists of a brief overview of the achieved results in the space L
2
(R
n
) including the
focus on the importance of shift-invariant spaces and other concepts mentioned in dissertation. The second chapter presents the theory of distributions. The main tool used
in dissertation, the Fourier transform, is presented in the third chapter. Also, Sobolev
spaces Hr
(R
n
), r ∈ R, and spaces DL2 (R
n
), D′
L2 (R
n
), are presented in the third chapter.
The fourth chapter discusses spaces of periodic functions and periodic distributions, some
important equalities used in research, and the theory of wave fronts. Theory of frames in
Hilbert spaces is presented in the fifth chapter. Finally, the sixth chapter presents original
results of this dissertation.
Abstract (sr)
Ova doktorska disertacija istraˇzuje translaciono-invarijantne potprostore Vr prostora Soboljeva Hr
(R
n
), pri ˇcemu je r ∈ R. Karakterizacija prostora Vr izvrˇsena je koriˇs´cenjem
funkcije opsega, operatora opsega, operatora koji komutiraju sa translacijama i talasnim
frontom. Takod¯e, izvrˇsena je karakterizacija okvira, Risove familije i Beselove familije
uz pomo´c pomenutih operatora i posebno koriste´ci Gramovu i dualnu Gramovu matricu.
Istraˇzivani su odnosi izmed¯u navedenih operatora i odred¯eni uslovi pod kojima operator koji komutira sa translacijama moˇze biti s-dijagonalizabilan i moˇze se zapisati kao
konaˇcan zbir proizvoda njegovih s-sopstvenih vrednosti i odgovarju´cih projekcija. Problem dinamiˇckog uzorkovanja za prostore Vr je reˇsen i povezani su razliˇciti pristupi teoriji
translaciono-invarijantnih prostora. Elementi prostora Vr su opisani pomo´cu talasnog
fronta. Na kraju, uslovi pod kojima postoji proizvod elemenata iz posmatranih prostora
i uslovi kada ´ce takav proizvod pripadati nekom translaciono-invarijantnom prostoru su
odred¯eni.
Disertaciju ˇcini ˇsest glava. Prva glava je uvodnog karaktera. Sastoji se iz kratkog pregleda postignutih rezultata u prostoru L
2
(R
n
), ukljuˇcuju´ci i fokus na znaˇcaj translacionoinvarijantnih prostora i drugih pojmova koji se pominju u disertaciji. U drugoj glavi
izloˇzena je teorija distribucija. Glavni alat koji se koristi u disertaciji, Furijeova transformacija, predstavljena je u tre´coj glavi. Takod¯e, prostori Soboljeva Hr
(R
n
), r ∈ R,
i prostori DL2 (R
n
), D′
L2 (R
n
) su predstavljeni u tre´coj glavi. Cetvrta glava sadrˇzi pros- ˇ
tore periodiˇcnih funkcija i periodiˇcnih distribucija, neke bitne jednakosti koje se koriste
u istraˇzivanju, i teoriju o talasnom frontu. Teorija okvira u Hilbertovim prostorima je
izloˇzena u petoj glavi. Na kraju, u ˇsestoj glavi su predstavljeni originalni rezultati ove
disertacije.
Authors Key words
Sobolev spaces, shift-invariant space, range function, range operator,
shift-preserving operator, frame, s-diagonalization, dynamical sampling, wave front, product of distributions.
Authors Key words
Soboljevi prostori, translaciono-invarijantni prostori, funkcija opsega,
operator opsega, operator koji komutira sa translacijama, okvir, s-dijagonalizacija, dinamiˇcko uzorkovanje, talasni front, proizvod distribucija.
Classification
517.98(043.3)
Subject
Matematika - Funkcionalna analiza
Type
Tekst
Abstract (en)
This doctoral dissertation investigates shift-invariant subspaces Vr of Sobolev spaces
Hr
(R
n
), where r ∈ R. Characterization of the spaces Vr was performed using range
functions, range operators, shift-preserving operators, and wave front. Also, characterizations of frames, Riesz families, and Bessel families were performed using the mentioned
operators and especially using Gram’s and dual Gram’s matrix. Relationships between
the mentioned operators were investigated, and the conditions under which the shiftpreserving operator could be s-diagonalizable and could be written as a finite sum of
products of its s-eigenvalues and corresponding projections were determined. The problem of dynamical sampling for spaces Vr was solved and different approaches to the theory
of shift-invariant spaces were identified. Elements of the spaces Vr were described using
a wave front. Finally, conditions under which there exists a product of elements from the
observed spaces and conditions when such a product would belong to some shift-invariant
space were determined.
The dissertation consists of six chapters. The first chapter is of an introductory nature.
It consists of a brief overview of the achieved results in the space L
2
(R
n
) including the
focus on the importance of shift-invariant spaces and other concepts mentioned in dissertation. The second chapter presents the theory of distributions. The main tool used
in dissertation, the Fourier transform, is presented in the third chapter. Also, Sobolev
spaces Hr
(R
n
), r ∈ R, and spaces DL2 (R
n
), D′
L2 (R
n
), are presented in the third chapter.
The fourth chapter discusses spaces of periodic functions and periodic distributions, some
important equalities used in research, and the theory of wave fronts. Theory of frames in
Hilbert spaces is presented in the fifth chapter. Finally, the sixth chapter presents original
results of this dissertation.
“Data exchange” service offers individual users metadata transfer in several different formats. Citation formats are offered for transfers in texts as for the transfer into internet pages. Citation formats include permanent links that guarantee access to cited sources. For use are commonly structured metadata schemes : Dublin Core xml and ETUB-MS xml, local adaptation of international ETD-MS scheme intended for use in academic documents.

